

АВТОМОБИЛЬНЫЙ ТРАНСПОРТ И ТЕХНИЧЕСКИЙ ПРОГРЕСС

Монография

Новосибирск 2015 г.

УДК 625.7/.8+629.3 ББК 39.3 A22

Рецензенты:

Ахмеднабиев Р.М., кандидат технических наук, доцент Полтавского национального технического университета имени Юрия Кондратюка;

Ахметов С.М., д-р техн. наук, проф., ректор Казахстанского университета инновационных и телекоммуникационных систем (КазУИТС), академик РАЕН, действительный член (академик) Национальной инженерной академии Республики Казахстан, г. Уральск

Авторы: Р.М. Ахмеднабиев (Предисловие); А.М. Бургонутдинов (Разд. I; $\Gamma \pi$. 3.); Т.В. Дормидонтова (Разд. I; $\Gamma \pi$. 2.); Ю.А. Погорельцева (Разд. II; $\Gamma \pi$. 2.); А.Н. Толстиков (Разд. II; $\Gamma \pi$. 1.); А.В. Филатова (Разд. I; $\Gamma \pi$. 1.); Б.С. Юшков (Разд. I; $\Gamma \pi$. 3.); В.С. Юшков (Разд. I; $\Gamma \pi$. 3.).

А22 «Автомобильный транспорт и технический прогресс»: коллективная научная монография; [под ред. Р.М. Ахмеднабиева]. Новосибирск: Изд. «СибАК», 2015. -150 с.

ISBN 978-5-4379-0430-5

В монографии отражены наиболее передовые исследования в области автомобильного транспорта, дорог и организации автомобильных перевозок. Несмотря на неудовлетворительное качество автомобильных дорог, в стране быстрыми темпами идет развитие логистики. В связи с этим одновременно с развитием самого автомобильного транспорта и улучшением качества автодорог, исследователи и менеджеры системы автомобильных перевозок разрабатывают и развивают правила оптимальной организации логистики автомобильных перевозок.

Читатели найдут в монографии мнения авторов о применении маркшейдерии при прокладывании автодорог, мониторинга инженерных сооружений и организации логистики автотранспортных перевозок.

Монография будет полезна для студентов технических ВУЗов, инженеров и технических работников сферы эксплуатации автомобильного транспорта.

Главный редактор: канд. техн. наук, доцент Полтавского национального технического университета имени Юрия Кондратюка — Ахмеднабиев Расул Магомедович.

ББК 39.3

ISBN 978-5-4379-0430-5

© НП «СибАК», 2015 г.

СОДЕРЖАНИЕ:

Предисловие	7		
Раздел I. Строительство и техническое оснащение автомобильных дорог	10		
Глава 1. Применение маркшейдерии в геодезических работах при строительстве дорожного полотна на карстовых территориях самарской области			
1.1 Особенности строительства на карстовых территориях Самарской области. Геодезические работы	11		
1.2. Значение маркшейдерии при строительстве автодорог	20		
Список литературы	26		
Глава 2. Рекомендации по осуществлению мониторинга инженерных сооружений на автомобильных дорогах	27		
2.1. Общие положения	27		
2.2. Приборы для проведения обследования	29		
2.3. Методы проведения обследования	31		
2.3.1. Экспертная оценка	31		
2.3.2. Визуальная оценка	32		
2.3.3. Инструментальная оценка	33		
2.3.4. Расчётная оценка.	33		
2.4. Обработка результатов обследования	34		
2.5. Проектная и фактическая надёжность строительных конструкций (элементов) и инженерных сооружений (систем)	37		

2.6. Способы восстановления надёжности	40
2.7. Документация при осуществлении мониторинга	41
Список литературы	41
Глава 3. Существующий уровень проблемы применения технических средств снижения ДТП на автомобильных дорогах	43
3.1. Системный подход к обеспечению безопасности дорожного движения	43
3.2. Технические средства организации дорожного движения	47
3.3. Участки с концентрацией ДТП	49
3.4. Мировой опыт применения шумовых полос	51
3.5. Шумовая полоса — функциональная особенность дороги	53
3.6. Воздействие виброполосы на водителя при движении автомобиля	57
3.7. Существующие механизмы фрезерования	61
Список литературы	65
Раздел II. Логистика перевозок автомобильным транспортом	68
Глава 1. Обоснование методики логистического управления перевозками автомобильным транспортом	68
1.1. Разработка основ внедрения информационных технологий в транспортно-технологический процесс	69
1.2. Оптимизация способов регулирования перевозочного процесса	75
1.2.1. Модель перевозочного процесса	75

1.2.2. Оптимизация корректирования нарушений транспортного процесса	7
Список литературы	8
ва 2. Ключевые показатели эффективности kpi. Модульная дика KPI	8
2.1. Модульная методология КРІ: Общая характеристика, структура, обоснование	8
2.1.1. Методология оценки эффективности (КРІ)	8
2.1.2. Разработка программы КРІ	9
2.1.3. Матрица. Модификационный ромб. Модель ключевых показателей	9
2.1.4. Разработка Программы КРІ — уровень автотранспортного предприятия (ООО «РЛК»)	9
2.2. Принципы, функции, уровни процесса внедрения и разработки показателей оценки эффективности транспортно — экспедиторских услуг	9
2.3. Методология процесса разработки программы КРІ	9
2.3.1. Модульная методика КРІ	Ģ
2.4. Комплексная сравнительная оценка качества, конкурентоспособности и эффективности КРІ	Ģ
2.5. Модульная методика КРІ. Ключевые показатели эффективности	10
2.5.1. KEY PERFORMANCE INDICATORS, KPI. Модуль «Эффективность автотранспортного предприятия OOO «РЛК»	10

2.5.2. KEY PERFORMANCE INDICATORS, KPI Модуль «Качество и конкурентоспособность»	108
2.5.3. KEY PERFORMANCE INDICATORS, KPI Показатели функционирования. Модуль «Профессиональные компетенции»	116
2.5.3.1. Модуль «Профессиональные компетенции»	116
2.5.3.2. Методология принятия решения КРІ: экспертные оценки и приемы работы с нечеткими понятиями	133
Список литературы	145
Сведения об авторах	147
Приложение	148

ПРЕДИСЛОВИЕ

С развитием отраслей промышленности в каждой стране возрастает роль транспорта, как средства транспортировки грузов от одного до другого предприятия, особенно если предприятия расположены в разных городах. Для России, страны с необъятными просторами, значение транспорта переоценить трудно и поэтому значимость автомобильных дорог в современных условиях жизни значительно возрастает и чем лучше техническое состояние автомобильных дорог, тем экономичнее используется автомобильный транспорт.

Рост автомобильных перевозок, их себестоимость, условия организации перевозок и обеспечение безопасности движения в значительной степени зависят от развития и состояния дорожной сети. Однако автомобильные дороги представляют собой комплекс инженерных сооружений для непрерывного, удобного и безопасного движения автомобилей с расчетной нагрузкой и установленными скоростями. В этот комплекс входят земляное полотно, дорожная одежда, мосты, трубы, другие искусственные сооружения, обустройство дорог и защитные сооружения, здания и сооружения автосервиса, дорожных и автотранспортных служб. Параметры и состояние элементов дороги и дорожных сооружений определяют ее технический уровень.

С каждым годом масса перевозимых грузов растет, порою автомобильным транспортом перевозятся негабаритные грузы большой массы. От таких грузов на основания дорог передаются большие нагрузки, в том числе и динамические, под действием которых в основаниях дорог могут происходить необратимые деформации.

На практике строительства автодорожного полотна в районах развития карста дорожных, городских и подземных сооружений нередко возникают весьма сложные ситуации, иногда приходится переносить объекты или осуществлять сложные и дорогостоящие защитные мероприятия, периодически восстанавливая их.

Изучению карст в Самарской области посвящена работа Филатовой А.В., в которой приведены ряд методических приёмов проведения маркшейдерских исследований.

Проектные решения автомобильных дорог должны обеспечивать: организованное, безопасное, удобное и комфортабельное движение автотранспортных средств с расчетными скоростями; однородные условия движения; соблюдение принципа зрительного ориентирования водителей; удобное и безопасное расположение примыканий и пере-

сечений; необходимое сцепление шин автомобилей с поверхностью проезжей части; необходимое обустройство автомобильных дорог, в том числе защитными дорожными сооружениями; необходимые здания и сооружения дорожной и автотранспортной служб и т. п.

Технический уровень дороги — степень соответствия постоянных ее параметров и дорожных сооружений нормативным требованиям: проектная ширина проезжей части и земляного полотна, длина прямых и кривых, протяженность и крутизна подъемов и спусков, высота насыпей, глубина выемок, габариты и грузоподъемность мостов и путепроводов, элементы обустройства.

Для обеспечения безопасного движения автомобильного транспорта инженерные сооружения автомобильных дорог требует постоянного мониторинга их состояния, так как в настоящее время большое их количество находятся без квалифицированного надзора за своим техническим состоянием.

Необходима объективная информация о техническом состоянии объектов, которую можно получить посредством мониторинга прочностных ресурсов.

На сегодняшний день технология мониторинга находится в стадии разработки концептуальных основ, хотя последние внезапные разрушения сооружений, как в нашей стране, так и за рубежом вывели эту проблему на одно из первых мест в системе мероприятий по обеспечению безопасности людей.

В работе Т.В. Дормидонтовой разработаны рекомендации по осуществлению мониторинга инженерных сооружений на автомобильных дорогах, в которой автор приводит ряд методов контроля прочности конструкций инженерных сооружений на автомобильных дорогах с одновременной обработкой данных.

Техническое состояние и плохая оснащенность автомобильных дорог, порою становится причиной ДТП. Колебания транспортной системы при движении по искусственным неровностям оказывают влияние на состояние водителя и пассажиров. Влияние знакопеременных ускорений на организм человека, в большей степени, зависит от частоты колебаний. С увеличением частоты, небольшие ускорения колебаний могут вызвать неприятные ощущения и даже нанести вред здоровью водителя,

При конструировании, создании и последующей эксплуатации транспортных систем, таких как автомобильный транспорт одним из важнейших вопросов является исследование условий движения и безопасности водителей. Моделирование на испытательных установках сопряжено с большими затратами и, как правило, возможно лишь после создания опытного образца. В этой связи альтернативой

или направлением снижения рисков и затрат является построение адекватных объектно-ориентированных компьютерных экспериментов, позволяющих проанализировать движение и влияние искусственных неровностей на водителя транспортного средства.

В настоящее время в результате увеличения объема перевозок пассажиров и грузов для обеспечения безопасности движения транспортных средств необходимо разрабатывать адекватные методы и эффективные инструментальные средства обеспечивающих снижение дорожно-транспортных происшествий.

Существующий уровень проблемы применения технических средств снижения ДТП на автомобильных дорогах рассматривается в работе, выполненной под руководством профессора Юшкова Б.С.

При перевозке грузов автомобильным транспортом необходимо удостовериться в том, что транспортная компания обеспечивает безопасное и надежное обслуживание. Автотранспортная компания должна выполнять контрольные проверки комплексного управления безопасностью перевозок, чтобы обеспечить уверенность, необходимую для успешного осуществления производственной деятельности.

Ключевым фактором, ведущим к оптимизации технологических процессов на предприятии, становится управляемость. Управляемость на грузовых АТП достигается за счет современных систем управления, в том числе и оперативной.

В работе Толстикова А.Н. разработана методика формирования теоретико-методологических основ логистического управления перевозками автомобильным транспортом. Автор разработал основы внедрения информационных технологий в транспортно-технологический процесс и на этой основе предлагает оптимизацию способов регулирования перевозочного процесса. Логистический центр автотранспортного предприятия при возникновении «особого состояния» определяет критическое время цикла управления, в течение которого быть введены резервы соответствующего уровня и организован форсированный режим перевозок, Несомненно, любой технологический процесс должен быть эффективным, в том числе транспортно-технологический. Генеральный директор ООО «РУССКАЯ ЛОГИСТИЧЕСКАЯ КОМПАНИЯ» Погорельцева Ю.А на своём предприятии внедрила систему «key performance indicators (KPI)» или точнее «ключевой показатель результата деятельности». Автор анализирует в своей работе эффективность применения этой системы на своём автотранспортном предприятии.

Ахмеднабиев Расул Магомедович

СВЕДЕНИЯ ОБ АВТОРАХ

Бургонумдинов Альберт Максимович — кандидат технических наук, доцент кафедры автомобильных дорог и мостов, ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет» (Россия, г. Пермь).

Дормидонтова Татьяна Владимировна — кандидат технических наук, доцент, заведующая кафедрой автомобильных дорог и геодезического сопровождения строительства, Самарский государственный архитектурно-строительный университет (Россия, г. Самара).

Погорельцева Юлия Анатольевна — генеральный директор Общества с ограниченной ответственностью «РУССКАЯ ЛОГИСТИЧЕСКАЯ КОМПАНИЯ» (ООО «РЛК»), генеральный директор ООО "БУХУЧЕТ (Россия, г. Санкт-Петербург).

Толстиков Александр Николаевич — адъюнкт, кафедра автодорожной службы, Военная академия материально-технического обеспечения (Россия, г. Санкт-Петербург).

Филатова Анастасия Викторовна — кандидат философских наук, доцент кафедры автомобильных дорог и геодезического сопровождения строительства, Самарский государственный архитектурно-строительный университет (Россия, г. Самара).

Юшков Борис Семенович — кандидат технических наук, профессор, заведующий кафедрой автомобильных дорог и мостов, ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет» (Россия, г. Пермь).

Юшков Владимир Сергеевич — аспирант кафедры автомобильных дорог и мостов, старший преподаватель кафедры автомобилей и технологических машин, ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет» (Россия, г. Пермь).

Монография

АВТОМОБИЛЬНЫЙ ТРАНСПОРТ И ТЕХНИЧЕСКИЙ ПРОГРЕСС

Под редакцией кандидата технических наук Р.М. Ахмеднабиева

Подписано в печать 27.06.15. Формат бумаги 60x84/16. Бумага офсет №1. Гарнитура Times. Печать цифровая. Усл. печ. л. 9,375. Тираж 550 экз.

Издательство «СибАК» 630049, г. Новосибирск, Красный проспект, 165, офис 4. E-mail: mail@sibac.info

Отпечатано в полном соответствии с качеством предоставленного оригинал-макета в типографии «Allprint» 630004, г. Новосибирск, Вокзальная магистраль, 3